Солнечные батареи для космических аппаратов. Орбитальные солнечные станции. Основы космической солнечной энергетики

Солнечная батарея на МКС

Солнечная батарея - несколько объединённых фотоэлектрических преобразователей (фотоэлементов) - полупроводниковых устройств, прямо преобразующих солнечную энергию в постоянный электрический ток, в отличие от солнечных коллекторов, производящих нагрев материала-теплоносителя.

Различные устройства, позволяющие преобразовывать солнечное излучение в тепловую и электрическую энергию, являются объектом исследования гелиоэнергетики (от гелиос греч. Ήλιος , Helios - ). Производство фотоэлектрических элементов и солнечных коллекторов развивается в разных направлениях. Солнечные батареи бывают различного размера: от встраиваемых в микрокалькуляторы до занимающих крыши автомобилей и зданий.

История

Первые прототипы солнечных батарей были созданы итальянским фотохимиком армянского происхождения Джакомо Луиджи Чамичаном.

25 апреля 1954 года, специалисты компании Bell Laboratories заявили о создании первых солнечных батарей на основе кремния для получения электрического тока. Это открытие было произведено тремя сотрудниками компании - Кельвином Соулзером Фуллером (Calvin Souther Fuller), Дэрилом Чапин (Daryl Chapin) и Геральдом Пирсоном (Gerald Pearson). Уже через 4 года, 17 марта 1958 году, в США был запущен первый с солнечными батареями - Vanguard 1. Спустя всего пару месяцев, 15 мая 1958 года в СССР был запущен Спутник-3, также с использованием солнечных батарей.

Использование в космосе

Солнечные батареи - один из основных способов получения электрической энергии на : они работают долгое время без расхода каких-либо материалов, и в то же время являются экологически безопасными, в отличие от ядерных и .

Однако при полётах на большом удалении от Солнца (за орбитой ) их использование становится проблематичным, так как поток солнечной энергии обратно пропорционален квадрату расстояния от Солнца. При полётах же к и , напротив, мощность солнечных батарей значительно возрастает (в районе Венеры в 2 раза, в районе Меркурия в 6 раз).

Эффективность фотоэлементов и модулей

Мощность потока солнечного излучения на входе в атмосферу (AM0), составляет около 1366 ватт на квадратный метр (см. также AM1, AM1.5, AM1.5G, AM1.5D). В то же время, удельная мощность солнечного излучения в Европе в очень облачную погоду даже днём может быть менее 100 Вт/м². С помощью распространённых промышленно производимых солнечных батарей можно преобразовать эту энергию в электричество с эффективностью 9-24 %. При этом цена батареи составит около 1-3 долларов США за Ватт номинальной мощности. При промышленной генерации электричества с помощью фотоэлементов цена за кВт·ч составит 0,25 долл. По мнению Европейской Ассоциации Фотовольтаики (EPIA), к 2020 году стоимость электроэнергии, вырабатываемой «солнечными» системами, снизится до уровня менее 0,10 € за кВт·ч для промышленных установок и менее 0,15 € за кВт·ч для установок в жилых зданиях.

В 2009 году компания Spectrolab (дочерняя фирма Boeing) продемонстрировала солнечный элемент с эффективностью 41,6 %. В январе 2011 года ожидалось поступление на рынок солнечных элементов этой фирмы с эффективностью 39 %. В 2011 году калифорнийская компания Solar Junction добилась КПД фотоэлемента размером 5,5×5,5 мм в 43,5 %, что на 1,2 % превысило предыдущий рекорд.

В 2012 году компания Morgan Solar создала систему Sun Simba из полиметилметакрилата (оргстекла), германия и арсенида галлия, объединив концентратор с панелью, на которой установлен фотоэлемент. КПД системы при неподвижном положении панели составил 26-30 % (в зависимости от времени года и угла, под которым находится Солнце), в два раза превысив практический КПД фотоэлементов на основе кристаллического кремния.

В 2013 году компания Sharp создала трёхслойный фотоэлемент размером 4х4 мм на индиево-галлий-арсенидной основе с КПД 44,4 %, а группа специалистов из Института систем солнечной энергии общества Фраунгофера, компаний Soitec, CEA-Leti и Берлинского центра имени Гельмгольца создали фотоэлемент, использующий линзы Френеля с КПД 44,7 %, превзойдя своё собственное достижение в 43,6 %. В 2014 году Институт солнечных энергосистем Фраунгофер создали солнечные батареи, в которых благодаря фокусировке линзой света на очень маленьком фотоэлементе КПД составил 46%.

В 2014 году испанские учёные разработали фотоэлектрический элемент из кремния, способный преобразовывать в электричество инфракрасное излучение Солнца.

Перспективным направлением является создание фотоэлементов на основе наноантенн, работающих на непосредственном выпрямлении токов, наводимых в антенне малых размеров (порядка 200-300 нм) светом (т. е. электромагнитным излучением частоты порядка 500 ТГц). Наноантенны не требуют дорогого сырья для производства и имеют потенциальный КПД до 85%.

Максимальные значения эффективности фотоэлементов и модулей,
достигнутые в лабораторных условиях
Тип Коэффициент фотоэлектрического преобразования, %
Кремниевые
Si (кристаллический) 24,7
Si (поликристаллический) 20,3
Si (тонкопленочная передача) 16,6
Si (тонкопленочный субмодуль) 10,4
III-V
GaAs (кристаллический) 25,1
GaAs (тонкопленочный) 24,5
GaAs (поликристаллический) 18,2
InP (кристаллический) 21,9
Тонкие пленки халькогенидов
CIGS (фотоэлемент) 19,9
CIGS (субмодуль) 16,6
CdTe (фотоэлемент) 16,5
Аморфный/Нанокристаллический кремний
Si (аморфный) 9,5
Si (нанокристаллический) 10,1
Фотохимические
На базе органических красителей 10,4
На базе органических красителей (субмодуль) 7,9
Органические
Органический полимер 5,15
Многослойные
GaInP/GaAs/Ge 32,0
GaInP/GaAs 30,3
GaAs/CIS (тонкопленочный) 25,8
a-Si/mc-Si (тонкий субмодуль) 11,7

Факторы, влияющие на эффективность фотоэлементов

Особенности строения фотоэлементов вызывают снижение производительности панелей с ростом температуры.

Из рабочей характеристики фотоэлектрической панели видно, что для достижения наибольшей эффективности требуется правильный подбор сопротивления нагрузки. Для этого фотоэлектрические панели не подключают напрямую к нагрузке, а используют контроллер управления фотоэлектрическими системами, обеспечивающий оптимальный режим работы панелей.

Производство

Очень часто одиночные фотоэлементы не вырабатывают достаточной мощности. Поэтому определенное количество фотоэлементов соединяется в так называемые фотоэлектрические солнечные модули и между стеклянными пластинами монтируется укрепление. Эта сборка может быть полностью автоматизирована.



Это фотоэлектрические преобразователи - полупроводниковые устройства, преобразующие солнечную энергию в постоянный электрический ток. Проще говоря, это основные элементы устройства, которое мы называем «солнечными батареями». С помощью таких батарей на космических орбитах работают искусственные спутники Земли. Делают такие батареи у нас в Краснодаре - на заводе «Сатурн». Руководство завода пригласило автора этого блога посмотреть на производственный процесс и рассказать о нем у себя в дневнике.

1. Предприятие в Краснодаре входит в структуру Федерального космического агентства, но владеет «Сатурном» компания «Очаково», которая в буквальном смысле спасла это производство в 90-е годы. Владельцы «Очаково» выкупили контрольный пакет акций, который чуть было не ушел к американцам. «Очаково» вложила сюда большие средства, закупила современное оборудование, сумела удержать специалистов и теперь «Сатурн» - один из двух лидеров на российском рынке производства солнечных и аккумуляторных батарей для нужд космической отрасли - гражданской и военной. Вся прибыль, которую получает «Сатурн», остается здесь, в Краснодаре, и идет на развитие производственной базы.

2. Итак, всё начинается здесь - на участке т.н. газофазной эпитаксии. В этом помещении стоит газовый реактор, в котором на подложке из германия в течение трех часов выращивается кристаллический слой, который будет служить основой для будущего фотоэлемента. Стоимость такой установки - около трех миллионов евро.

3. После этого подложке предстоит пройти еще долгий путь: на обе стороны фотоэлемента нанесут электрические контакты (причем, на рабочей стороне контакт будет иметь «рисунок-гребенку», размеры которой тщательно рассчитываются, чтобы обеспечить максимальное прохождение солнечного света), на подложке появится просветляющее покрытие и т.д. - всего более двух десятков технологических операций на различных установках, прежде чем фотоэлемент станет основой солнечной батареи.

4. Вот, например, установка фотолитографии. Здесь на фотоэлементах формируются «рисунки» электрических контактов. Машина производит все операции автоматически, по заданной программе. Здесь и свет соответствующий, который не вредит светочувствительному слою фотоэлемента - как раньше, в эпоху аналоговой фотографии, мы пользовались «красными» лампами.

5. В вакууме установки напыления с помощью электронного луча наносятся электрические контакты и диэлектрики, а также наносятся просветляющие покрытия (они увеличивают ток, вырабатываемый фотоэлементом на 30%).

6. Ну вот, фотоэлемент готов и можно приступать к сборке солнечной батареи. К поверхности фотоэлемента припаиваются шины, чтобы потом соединить их друг с другом, а на них наклеивается защитное стекло, без которого в космосе, в условиях радиации, фотоэлемент может не выдержать нагрузок. И, хотя толщина стекла всего 0,12 мм, батарея с такими фотоэлементами будет долго работать на орбите (на высоких орбитах больше пятнадцати лет).

7. Электрическое соединение фотоэлементов между собой осуществляется серебряными контактами (их называют шинками) толщиной всего 0,02 мм.

8. Чтобы получить нужное напряжение в сети, вырабатываемое солнечной батареей, фотоэлементы соединяются последовательно. Вот так выглядит секция последовательно соединенных фотоэлементов (фотоэлектрических преобразователей - так правильно).

9. Наконец, солнечная батарея собрана. Здесь показана только часть батареи – панель в формате макета. Таких панелей на спутнике может быть до восьми, в зависимости от того, какая нужна мощность. На современных спутниках связи она достигает 10 кВт. Такие панели будут смонтированы на спутнике, в космосе они раскроются, как крылья и с их помощью мы будем смотреть спутниковое телевидение, пользоваться спутниковым интернетом, навигационными системами (спутники «Глонасс» используют краснодарские солнечные батареи).

10. Когда космический аппарат освещается Солнцем, вырабатываемая солнечной батареей электроэнергия питает системы аппарата, а избыток энергии запасается в аккумуляторной батарее. Когда космический аппарат находится в тени от Земли, аппаратом используется электроэнергия, запасенная в аккумуляторной батарее. Никель-водородная батарея, обладая высокой энергоемкостью (60 Вт ч/кг) и практически неисчерпаемым ресурсом, широко используется на космических аппаратах. Производство таких батарей - еще одна часть работы завода «Сатурн». На этом снимке сборку никель-водородной аккумуляторной батареи производит кавалер медали ордена «За заслуги перед Отечеством» II степени Анатолий Дмитриевич Панин.

11. Участок сборки никель-водородных аккумуляторов. Начинка аккумулятора подготавливается к размещению в корпусе. Начинка - это положительные и отрицательные электроды, разделённые сепараторной бумагой - в них и происходит преобразование и накопление энергии.

12. Установка для электронно-лучевой сварки в вакууме с помощью которой изготавливается корпус аккумулятора из тонкого металла.

13. Участок цеха, где корпуса и детали аккумуляторов испытываются на воздействие повышенного давления. В связи с тем, что накопление энергии в аккумуляторе сопровождается образованием водорода, и давление внутри аккумулятора повышается, испытания на герметичность - неотъемлемая часть процесса изготовления аккумуляторов.

14. Корпус никель-водородного аккумулятора - очень важная деталь всего устройства, работающего в космосе. Корпус рассчитан на давление 60 кг·с/см 2 , при испытаниях разрыв произошел при давлении 148 кг·с/см 2 .

15. Проверенные на прочность аккумуляторы заправляют электролитом и водородом, после чего они готовы к работе.

16. Корпус никель-водородной аккумуляторной батареи изготавливается из специального сплава металлов и должен быть механически прочным, легким и обладать высокой теплопроводностью. Аккумуляторы устанавливаются в ячейки и между собой не соприкасаются.

17. Аккумуляторы и собранные из них батареи подвергаются электрическим испытаниям на установках собственного производства. В космосе уже невозможно будет ничего поправить и заменить, поэтому здесь тщательно испытывают каждое изделие.

18. Вся космическая техника подвергается испытаниям на механические воздействия с помощью вибрационных стендов, которые имитируют нагрузки при выведении космического аппарата на орбиту.

19. В целом завод «Сатурн» произвел самое благоприятное впечатление. Производство хорошо организовано, цеха чистые и светлые, народ работает квалифицированный, общаться с такими специалистами - одно удовольствие и очень интересно человеку, хоть в какой-то степени интересующемуся нашим космосом. Уезжал с «Сатурна» в отличном настроении - всегда приятно посмотреть у нас на место, где не занимаются пустой болтовней и не перекладывают бумажки, а делают настоящее, серьезное дело, успешно конкурируют с такими же производителями в других странах. Побольше бы в России такого.

Изобретение относится к ракетно-космической технике, а именно к элементам конструкции солнечных батарей космических аппаратов. Несущая панель солнечной батареи космического аппарата содержит раму и несущие верхнее и нижнее основания. Между упомянутыми основаниями и рамой герметично установлены заполнитель в виде сот и перпендикулярно основаниям силовые перегородки. Для сообщения внутренних объемов сот между собой каждый из вариантов изобретения предусматривает выполнение дренажных отверстий в боковых поверхностях каждой соты заполнителя и силовых перегородках. Для сообщения внутренних объемов сот с наружной средой первый вариант изобретения предусматривает выполнение дренажных отверстий по крайней мере в одном элементе рамы, второй вариант изобретения предусматривает выполнение дренажных отверстий в нижнем основании панели равномерно по площади его поверхности, а третий вариант изобретения предусматривает выполнение дренажных отверстий по крайней мере в одном элементе рамы и в нижнем основании панели равномерно по площади его поверхности. При этом суммарные площади дренажных отверстий в упомянутых элементах конструкции несущей панели определяются с учетом суммарного объема газовой среды в сотах, коэффициентов расхода дренажных отверстий и максимального по траектории полета ракеты-носителя перепада давлений газовой среды, действующего на основания панели. Изобретение позволяет повысить конструктивную прочность несущих панелей солнечных батарей космического аппарата без увеличения их массы, упростить технологию изготовления и монтажа панелей и повысить надежность их эксплуатации. 3 н.п. ф-лы, 4 ил.


Изобретение относится к области аэрогазодинамики летательных аппаратов (ЛА) и может быть использовано в ракетостроении при проектировании и создании панелей солнечной батареи (СБ) космических аппаратов (КА), выполненных по трехслойной несущей схеме.

Известны и широко применяются в авиации при изготовлении элементов ЛА (фюзеляжа, оперения, крыла и т.д.) панели, выполненные по трехслойной несущей схеме, содержащие каркас (раму), несущее верхнее и нижнее основания, между которыми установлен заполнитель в виде сот .

Предназначенные для восприятия и передачи распределенных нагрузок, действующих на элементы ЛА, панели, выполненные по трехслойной схеме с сотовым заполнителем, обеспечивают большую жесткость и высокую несущую способность. При нагружении панели жесткий на сдвиг и легкий сотовый заполнитель воспринимает поперечный сдвиг и предохраняет тонкие несущие слои от потери устойчивости при продольном сжатии.

К недостаткам этого технического решения следует отнести увеличенный вес элементов каркаса и несущих оснований панелей из-за значительных перепадов давлений, действующих на элементы панели по траектории полета ЛА при изменении высоты полета ЛА.

Известны применяемые в ракетостроении панели СБ КА, предназначенные для установки на них чувствительных элементов (фотоэлектрических преобразователей) системы энергопитания КА. Панели также выполнены по трехслойной несущей схеме и содержат раму, несущие верхнее и нижнее основания, между которыми герметично установлен заполнитель в виде сот, а также силовые перегородки, герметично установленные перпендикулярно основаниям для увеличения жесткости панели . Для уменьшения веса конструкции панелей СБ раму, несущие основания и перегородки выполняют из облегченных материалов.

Несущие панели СБ КА, применяемые в ракетостроении, так же, как и панели, применяемые в авиации, обеспечивают большую жесткость и высокую несущую способность трехслойной конструкции панели СБ с сотовым заполнителем.

К недостаткам этого технического решения следует отнести пониженную конструктивную прочность несущих панелей СБ и возможность потери ее общей и местной устойчивости при отклонении в технологии изготовления и эксплуатации панели, обусловленные более существенными аэрогазодинамическими нагрузками, действующими на элементы панелей СБ КА, по сравнению с авиационными нагрузками. При этом наружное давление, действующее на панель СБ КА по траектории полета ракеты-носителя (РН), изменяется в более широких пределах: от атмосферного (на уровне Земли при старте РН) до практически нулевого при выводе в межпланетное пространство, а давление внутри герметичной панели по траектории полета РН остается атмосферным.

Задачей изобретения является повышение конструктивной прочности несущих панелей СБ КА без увеличения их массы при выводе КА ракетой-носителем в межпланетное пространство.

Задача решается таким образом (вариант 1), что в несущей панели СБ КА, содержащей раму, несущие верхнее и нижнее основания, между которыми герметично установлен заполнитель в виде сот, силовые перегородки, герметично установленные перпендикулярно основаниям, согласно изобретению в боковых поверхностях каждой соты заполнителя и перегородках выполнены сквозные дренажные отверстия, сообщающие внутренние объемы сот между собой, а в раме, по крайней мере в одном элементе рамы, выполнены дренажные отверстия, сообщающие внутренние объемы сот с наружной средой, при этом суммарную эффективную площадь дренажных отверстий в сотах, перегородках и раме определяют из соотношений:

S 2 [см 2 ] - суммарная площадь дренажных отверстий в раме;

a, b - зависящие от параметров траектории ракеты-носителя коэффициенты, аппроксимирующие кривую зависимости эффективной площади дренажных отверстий в раме от максимального по траектории перепада давлений, действующего на основания панелей.

Задача решается также таким образом (вариант 2), что в несущей панели СБ КА, содержащей раму, несущие верхнее и нижнее основания, между которыми герметично установлен заполнитель в виде сот, силовые перегородки, герметично установленные перпендикулярно основаниям, согласно изобретению в боковых поверхностях каждой соты заполнителя и перегородок выполнены дренажные отверстия, сообщающие внутренние объемы сот между собой, а в нижнем основании панели равномерно по площади его поверхности выполнены дренажные отверстия, сообщающие внутренние объемы сот с наружной средой, при этом суммарную эффективную площадь дренажных отверстий в сотах, перегородках и нижнем основании определяют из соотношений:

S 1 [см 2 ] - суммарная площадь дренажных отверстий в торцевой поверхности сот;

S 3 [см 2 ] - суммарная площадь дренажных отверстий в нижнем основании;

V [м 3 ] - суммарный объем газовой среды в сотах;

μ.GIF; 1 - коэффициент расхода дренажных отверстий в сотах и перегородках;

μ.GIF; 3 - коэффициент расхода дренажных отверстий в нижнем основании;

Δ.GIF; Р [кгс/см 2 ] - максимальный по траектории полета РН перепад давлений газовой среды, действующий на основания панели;

a, b - зависящие от параметров траектории ракеты-носителя коэффициенты, аппроксимирующие кривую зависимости эффективной площади дренажных отверстий в основаниях панелей от максимального по траектории перепада давлений, действующего на основания панели.

Задача решается также таким образом (вариант 3), что в несущей панели СБ КА, содержащей раму, несущие верхнее и нижнее основания, между которыми герметично установлен заполнитель в виде сот, силовые перегородки, герметично установленные перпендикулярно основаниям, согласно изобретению в боковых поверхностях каждой соты заполнителя и перегородках выполнены сквозные дренажные отверстия, сообщающие внутренние объемы сот между собой, а в раме, по крайней мере в одном элементе рамы, и в нижнем основании панели равномерно по площади его поверхности выполнены дренажные отверстия, сообщающие внутренние объемы сот с наружной средой, при этом суммарную эффективную площадь дренажных отверстий в сотах, перегородках, раме и нижнем основании определяют из соотношений:

S 1 [см 2 ] - суммарная площадь дренажных отверстий в торцевой поверхности сот;

S 2 , S 3 [см 2 ] - суммарная площадь дренажных отверстий в раме и нижнем основании, соответственно;

V [м 3 ] - суммарный объем газовой среды в сотах;

μ.GIF; 1 - коэффициент расхода дренажных отверстий в сотах и перегородках;

μ.GIF; 2 , μ.GIF; 3 - коэффициент расхода дренажных отверстий в раме и нижнем основании панели, соответственно;

Δ.GIF; P [кгс/см 2 ] - максимальный по траектории полета РН перепад давлений газовой среды, действующий на основания панели;

Техническими результатами изобретения являются:

Уменьшение перепадов давлений, действующих на основания и чувствительные элементы панели СБ при минимально допустимых перепадах давлений, действующих на стенки сот заполнителя;

Определение эффективной площади дренажных отверстий в сотах, раме, несущих основаниях и перегородках панели;

Определение влияния параметров траектории (числа М, высоты полета Н) на эффективную площадь дренажных отверстий.

Сущность изобретения иллюстрируется схемами панели СБ КА и графиком изменения избыточных давлений, действующих на ее элементы.

На фиг.1, 2 и 3 приведены схемы панели СБ КА, выполненной соответственно в вариантах 1, 2 и 3, и выделены ее фрагменты, где:

2 - верхнее основание;

3 - нижнее основание;

4 - заполнитель;

5 - перегородки;

6 - дренажные отверстия;

7 - чувствительные элементы.

Здесь же стрелками показано направление перетекания газовой среды в сотах заполнителя панели и ее истечение в наружную среду.

На фиг.4 приведена зависимость максимального по траектории полета РН перепада давлений Δ.GIF; Р(Δ.GIF; Р=Рвн-Рнар) газовой среды, действующего на основания панелей, от относительной эффективной площади проходных сечений дренажных отверстий μ.GIF; ·S/V, где:

Рвн - давление газовой среды внутри панели (в сотах заполнителя);

Рнар - давление газовой среды снаружи панели.

Несущая панель СБ КА (фиг.1, 2, 3) содержит раму 1, несущие верхнее основание 2 и нижнее основание 3, а также силовые перегородки 5, установленные перпендикулярно этим основаниям. Между основаниями герметично установлен заполнитель 4 в виде сот. На верхнем основании 2 установлены чувствительные элементы 7 системы энергопитания КА.

В боковых поверхностях каждой соты заполнителя 4 и силовых перегородках 5, в отличие от прототипа, в каждом варианте выполнены дренажные отверстия 6, сообщающие внутренние объемы сот между собой и с наружной средой (см. вид А и разрез по ВВ).

В варианте 1 (фиг.1) внутренние объемы сот сообщают с наружной средой посредством дренажных отверстий 6, выполненных в раме 1, по крайней мере, в одном ее элементе.

В варианте 2 (фиг.2) внутренние объемы сот сообщают с наружной средой посредством дренажных отверстий 6, выполненных в несущем нижнем основании 3, равномерно расположенных по площади его основания.

В варианте 3 (фиг.3) внутренние объемы сот сообщают с наружной средой посредством дренажных отверстий 6, выполненных в раме 1, по крайней мере, в одном ее элементе, а также в несущем нижнем основании 3, равномерно расположенных по площади его основания.

Благодаря равномерному расположению дренажных отверстий по площади оснований панели обеспечивается равномерное или близкое к равномерному распределение давления в сотах заполнителя и, следовательно, перепадов давлений, действующих на основания панели. Тем самым исключают концентрации напряжений в местах стыка элементов панели от неравномерных перепадов давлений, что приводит к упрощению технологии изготовления панелей и повышению надежности ее эксплуатации при наличии скрытых дефектов при ее изготовлении, например, при непроклейке отдельных элементов сот заполнителя с несущими основаниями.

Выбор варианта дренирования панелей определяется допустимыми эксплуатационными нагрузками, действующими на основания панелей по траектории полета РН с учетом конструктивных и технологических особенностей изготовления панелей.

Суммарную эффективную площадь дренажных отверстий в раме 1, в сотах заполнителя 4, перегородках 5 и нижнем основании 3 для заданной траектории полета РН определяют по соотношениям (1), (2) и (3), для вариантов 1, 2 и 3 соответственно, с учетом входящих в эти соотношения коэффициентов а, b, зависящих от параметров траектории РН.

Формулы (1), (2) и (3) содержат математическое описание зависимости относительной суммарной эффективной площади дренажных отверстий μ.GIF; ·S/V от максимального по траектории полета РН перепада давлений Δ.GIF; Р и получены по результатам анализа течения газовой среды в системе газодинамических взаимосвязанных емкостей, образованных дренированными сотами заполнителя 4 с силовыми перегородками 5, верхним основанием 2 и нижним основанием 3 с последующим ее истечением в наружную среду.

В ракетостроении раму 1 выполняют из углепластика, несущие основания 2 и 3, а также силовые перегородки 5 - из титана. Заполнитель 4 в виде сот выполняют из алюминиевого сплава и герметично крепят к верхнему основанию 2 и нижнему основанию 3 панели с помощью, например, авиационного клея ВКВ-9. Также к верхнему основанию 2 крепят чувствительные элементы 7 СБ.

Несущая панель СБ КА работает следующим образом.

Поскольку в боковых поверхностях каждой соты заполнителя 4 и элементах панели (фиг.1, 2 и 3), в отличие от прототипа, выполнены дренажные отверстия 6, при полете КА в составе головного блока РН, а также в автономном полете КА, после сброса обтекателей головного блока, происходит перетекание газовой среды между сотами заполнителя 4, силовыми перегородками 5 и истечение ее через дренажные отверстия в раме 1 и нижнем основании 6 в наружную среду (см. разрез по ВВ). Перетекание газовой среды происходит с несущественным запаздыванием выравнивания давления в сотах заполнителя 4.

При этом истечение газовой среды из сот заполнителя 4 в наружную среду происходит с дозвуковой скоростью с незапиранием ее в сотах заполнителя 4, так как суммарные эффективные площади μ.GIF; 2 ·S 2 дренажных отверстий 6 в раме 1 и μ.GIF; 3 ·S 3 - в нижнем основании 3 выполнены больше или равными суммарной эффективной площади μ.GIF; 1 ·S 1 в сотах заполнителя 4 с силовыми перегородками 5 (μ.GIF; 2 ·S 2 ≥.GIF; μ.GIF; 1 ·S 1 , μ.GIF; 3 ·S 3 ≥.GIF; μ.GIF; 1 ·S 1).

При полете КА в составе головного блока РН реализуют максимальный перепад давлений Δ.GIF; Р (фиг.4), действующий на основания панелей 2 и 3, в соответствии с формулами (1), (2) и (3). При этом газовая среда из сот заполнителя 4 перетекает в замкнутый объем под головным обтекателем, максимально допустимый перепад давлений в котором, по сравнению с наружным по траектории полета РН, определяют по известному техническому решению с использованием системы дренирования отсека .

В автономном полете КА внутри панели корпуса устанавливается внутреннее давление Р ВН, близкое к атмосферному (статическому окружающей атмосферы). Перепады Δ.GIF; Р давлений при этом между сотами заполнителя 4, а также внутренним давлением Рвн в сотах заполнителя 4 и наружной средой Рнар, действующие на верхнее основание 2 и нижнее основание 3 панели, близки к нулю.

Таким образом, уменьшают перепады давлений, действующие на элементы панелей и установленные на ней чувствительные элементы системы энергопитания КА. Тем самым повышают конструктивную прочность СБ КА без увеличения массы КА, что приводит к выполнению поставленной задачи.

Кроме того, вследствие уменьшения перепадов давлений, действующих на элементы панелей, упрощается технология изготовления и монтажа панели СБ КА и повышается надежность ее эксплуатации.

Расчеты, проведенные для панели корпуса, разработанной для КА "Ямал" , выводимого РН "Протон", показали, что перепады давлений Δ.GIF; Р, действующие на основания панели, по сравнению с прототипом, уменьшаются на порядок и практически приближаются к нулю.

В настоящее время техническое решение прошло экспериментальную проверку и внедряется на разрабатываемых предприятием КА.

Техническое решение может быть использовано для различных типов КА: околоземных, межпланетных, автоматических, пилотируемых и других КА.

Техническое решение может быть применено и в авиации, например, при использовании панели СБ в составе элемента крыла самолета. В этом случае эффективную площадь дренажных отверстий в элементах панели определяют с учетом максимальных перепадов давлений, действующих на элементы крыла по траектории полета самолета.

Литература

1. Авиация. Энциклопедия. М.: ЦАГИ, 1994 г., стр. 529.

2. На рубеже двух веков (1996-2001 г.). Под ред. акад. Ю.П.Семенова. М.: РКК "Энергия" имени С.П.Королева, 2001 г., стр. 834.

3. Патент RU 2145563 C1.


Формула изобретения


1. Несущая панель солнечной батареи космического аппарата, содержащая раму, несущие верхнее и нижнее основания, между которыми герметично установлены заполнитель в виде сот и перпендикулярно основаниям силовые перегородки, отличающаяся тем, что в боковых поверхностях каждой соты заполнителя и силовых перегородках выполнены сквозные дренажные отверстия, сообщающие внутренние объемы сот между собой, а в по крайней мере одном элементе рамы выполнены дренажные отверстия, сообщающие внутренние объемы сот с наружной средой, при этом суммарная эффективная площадь дренажных отверстий в сотах, силовых перегородках и раме определяется из соотношений

S 2 - суммарная площадь дренажных отверстий в раме, см 2 ;

μ.GIF; 2 - коэффициент расхода дренажных отверстий в раме;

a, b - зависящие от параметров траектории ракеты-носителя коэффициенты, аппроксимирующие кривую зависимости эффективной площади дренажных отверстий в раме от максимального по траектории перепада давлений, действующего на основания панели.

2. Несущая панель солнечной батареи космического аппарата, содержащая раму, несущие верхнее и нижнее основания, между которыми герметично установлены заполнитель в виде сот и перпендикулярно основаниям силовые перегородки, отличающаяся тем, что в боковых поверхностях каждой соты заполнителя и силовых перегородках выполнены дренажные отверстия, сообщающие внутренние объемы сот между собой, а в нижнем основании панели равномерно по площади его поверхности выполнены дренажные отверстия, сообщающие внутренние объемы сот с наружной средой, при этом суммарная эффективная площадь дренажных отверстий в сотах, силовых перегородках и нижнем основании панели определяется из соотношений

μ.GIF; 1 ·S 1 /V=a·Δ.GIF; P -b ,

где S 1 - суммарная площадь дренажных отверстий в боковых поверхностях сот и силовых перегородках, см 2 ;

S 3 - суммарная площадь дренажных отверстий в нижнем основании панели, см 2 ;

V - суммарный объем газовой среды в сотах, м 3 ;

μ.GIF; 1 - коэффициент расхода дренажных отверстий в боковых поверхностях сот и силовых перегородках;

μ.GIF; 3 - коэффициент расхода дренажных отверстий в нижнем основании панели;

Δ.GIF; Р - максимальный по траектории полета ракеты-носителя перепад давлений газовой среды, действующий на основания панели, кгс/см 2 ;

a, b - зависящие от параметров траектории ракеты-носителя коэффициенты, аппроксимирующие кривую зависимости эффективной площади дренажных отверстий в нижнем основании панели от максимального по траектории перепада давлений, действующего на основания панели.

3. Несущая панель солнечной батареи космического аппарата, содержащая раму, несущие верхнее и нижнее основания, между которыми герметично установлены заполнитель в виде сот и перпендикулярно основаниям силовые перегородки, отличающаяся тем, что в боковых поверхностях каждой соты заполнителя и силовых перегородках выполнены сквозные дренажные отверстия, сообщающие внутренние объемы сот между собой, а в по крайней мере одном элементе рамы и в нижнем основании панели равномерно по площади его поверхности выполнены дренажные отверстия, сообщающие внутренние объемы сот с наружной средой, при этом суммарная эффективная площадь дренажных отверстий в сотах, силовых перегородках, раме и нижнем основании панели определяется из соотношений

μ.GIF; 1 ·S 1 /V=a·Δ.GIF; P -b ,

μ.GIF; 2 ·S 2 /V≥.GIF; μ.GIF; 1 ·S 1 /V,

μ.GIF; 3 ·S 3 /V≥.GIF; μ.GIF; 1 ·S 1 /V,

где S 1 - суммарная площадь дренажных отверстий в боковых поверхностях сот и силовых перегородках, см 2 ;

S 2 , S 3 - суммарные площади дренажных отверстий в раме и нижнем основании панели соответственно, см 2 ;

V - суммарный объем газовой среды в сотах, м 3 ;

μ.GIF; 1 - коэффициент расхода дренажных отверстий в боковых поверхностях сот и силовых перегородках;

μ.GIF; 2 , μ.GIF; 3 - коэффициенты расхода дренажных отверстий в раме и нижнем основании панели соответственно;

Δ.GIF; Р - максимальный по траектории полета ракеты-носителя перепад давлений газовой среды, действующий на основания панели, кгс/см 2 ;

a, b - зависящие от параметров траектории ракеты-носителя коэффициенты, аппроксимирующие кривую зависимости эффективной площади дренажных отверстий в раме и нижнем основании панели от максимального по траектории перепада давлений, действующего на основания панели.


Холдинг "Российские космические системы" (РКС, входит в состав "Роскосмоса") завершил создание модернизированной системы электрической защиты для солнечных батарей отечественного производства. Её применение позволит существенно продлить срок работы источников питания космических аппаратов и сделает российские солнечные батареи одними из самых энергоэффективных в мире. О разработке сообщается в пресс-релизе, поступившем в редакцию.

В конструкции новых диодов использовали запатентованные технические решения, которые существенно улучшили их эксплуатационные характеристики и повысили их надёжность. Так, применение специально разработанной многослойной диэлектрической изоляции кристалла позволяет диоду выдерживать обратное напряжение до 1,1 киловольта. Благодаря этому новое поколение защитных диодов может использоваться с самыми эффективными из существующих фотоэлектрическими преобразователями (ФЭП). Ранее, когда диоды были неустойчивыми к высокому обратному напряжению, приходилось выбирать не самые эффективные образцы.

Для повышения надёжности и срока службы диодов в РКС создали новые многослойные коммутирующие шины диодов на основе молибдена, благодаря которым диоды выдерживают более 700 термоударов. Термоудар - типичная ситуация для фотоэлементов в космосе, когда при переходе из освещённой части орбиты в затенённую Землёй температура за несколько минут изменяется более чем на 300 градусов Цельсия. Стандартные компоненты земных солнечных батарей такого не выдерживают, а ресурс космических во многом определяется количеством термоударов, которое они могут пережить.

Срок активного существования солнечной батареи космического аппарата, оснащённой новыми диодами, увеличится до 15,5 года. Ещё 5 лет диод может храниться на Земле. Таким образом, общий гарантийный срок эксплуатации диодов нового поколения составляет 20,5 года. Высокая надёжность устройства подтверждена независимыми ресурсными испытаниями, в ходе которых диоды выдержали более семи тысяч термоциклов. Отработанная групповая технология производства позволяет РКС выпускать более 15 тысяч диодов нового поколения в год. Их поставки планируется начать уже в 2017 году.

Новые фотоэлементы выдержат до 700 перепадов температуры на 300 градусов Цельсия и смогут проработать в космосее более 15 лет

Солнечные батареи для космоса состоят из фотоэлектрических преобразователей (ФЭП) размером 25х50 миллиметров. Площадь солнечных батарей может достигать 100 квадратных метров (для орбитальных станций), поэтому ФЭП в одной системе может быть очень много. ФЭП расположены цепочками. Каждую отдельную цепочку называют "стринг". В космосе отдельные ФЭП периодически поражаются космическими лучами, и если бы на них не было никакой защиты, то из строя могла бы выйти вся солнечная батарея, в которой находится поражённый преобразователь.

Основу системы защиты солнечной батареи составляют диоды - небольшие устройства, устанавливаемые в комплекте с ФЭП. Когда солнечная батарея частично или полностью попадает в тень, ФЭП вместо подачи тока на аккумуляторы начинают его потребление - через ФЭП идёт обратное напряжение. Чтобы этого не происходило, на каждом ФЭП устанавливается шунтирующий диод, а на каждый "стринг" - блокирующий диод. Чем эффективнее ФЭП, чем больше тока он выдаёт, тем больше будет обратное напряжение при попадании солнечной батареи в тень Земли.

Если шунтирующий диод "не тянет" обратное напряжение выше определённой величины, ФЭП придется делать менее эффективными, чтобы как прямой ток зарядки батарей, так и обратный ток нежелательной разрядки были минимальны. Когда со временем под воздействием дестабилизирующих факторов космического пространства отдельные ФЭП или сразу "стринг" выходят из строя, такие элементы просто отсекаются, не затрагивая рабочие ФЭП и другие "стринги". Это позволяет остальным, ещё исправным, преобразователям продолжать работу. Таким образом, именно от качества диодов зависит энергоэффективность и срок активного существования солнечной батареи.

В СССР на солнечных батареях использовались только блокирующие диоды, при неисправности одного ФЭП выключавшие сразу целую цепочку преобразователей. Из-за этого деградация солнечных батарей на советских спутниках была быстрой и работали они не очень долго. Это заставляло чаще делать и запускать аппараты им на замену, что было весьма недёшево. С 1990-х при создании отечественных космических аппаратов стали применять ФЭП иностранного производства, которые закупались в сборе с диодами. Переломить ситуацию удалось лишь в XXI веке.

Изобретение относится к энергетическим системам космических объектов, основанным на прямом преобразовании лучистой энергии Солнца в электричество, и может быть использовано при создании экономичных солнечных батарей большой площади. Сущность: в космической солнечной батарее, содержащей несущий каркас, размещенные на нем фотоэлементы, включающие два проводящих электрода, разделенных зазором, один из которых выполнен светопроницаемым, на внутренней поверхности размещено покрытие из материалов с работой выхода, меньшей работы выхода материала электрода, причем величина зазора не превышает длины свободного пробега фотоэлектронов. 5 ил.

Изобретение относится к энергетическим системам космических объектов, основанным на прямом преобразовании лучистой энергии Солнца в электричество, и может быть использовано при создании космических солнечных батарей (СБ) большой площади. Известны солнечные батареи, содержащие каркас, размещенные на нем фотоэлементы, включающие два проводящих электрода, разделенных зазором, один из которых выполнен светопроницаемым Солнечные батареи на основе полупроводниковых структур различного типа обладают достаточно высоким КПД преобразования солнечной энергии. Недостатками известных СБ, основанных на внутреннем фотоэффекте, являются сложность структуры ФЭП с использованием в ней дефицитных материалов, например арсенида галлия; принципиальная ограниченность снизу толщины ФЭП ввиду многослойной, особенно варизонной, структуры преобразователя с применением подложек,различных оптических и защитных покрытий и вследствие этого относительно большая масса ФЭП, превышающая массу каркаса СБ, выполненного из высокопрочных материалов; чувствительность к воздействию космической среды, в частности к корпускулярным излучениям, что вызывает быструю деградацию рабочих характеристик,снижающую ресурс. В итоге данные недостатки приводят к высокой стоимости электроэнергии, вырабатываемой подобными СБ. Наиболее близкой к предлагаемому техническому решению является выбранная в качестве прототипа космическая солнечная батарея, содержащая несущий каркас, размещенные на нем фотоэлементы, включающие два проводящих электрода, разделенных зазором, один из которых выполнен светопроницаемым В качестве токогенерирующей области, образуемой между поверхностями ФЭП, в такой СБ используется гомо- или гетероструктурный слой (слои), на который нанесены электроды (например,оптический и барьерный) и необходимые покрытия. Токосъемные элементы могут быть выполнены в виде тонких проводящих сеток, образованных на поверхностях электродов. Несущий каркас представляет собой ферменную конструкцию из высокопрочных, например углепластиковых, стержневых элементов, на которую натянут ФЭП в виде гибких панелей на сетчатой подложке, закрепленных на каркасе по периферии. Известная СБ обладает достаточно высоким КПД (практически до 15-20%) и небольшой толщиной гибких панелей СБ (до 100-200 мкм), облегчающей хранение, транспортировку и развертывание СБ в рабочее состояние, например, из рулона. Недостатками известной СБ являются уже отмеченные выше, типичные для полупроводниковых ФЭП. Эти недостатки, в итоге, выражаются в недостаточно высоких удельных энергетических характеристиках (мощность не превышает 0,2 кВт/кг или 0,16 кВт/м 2) и эксплуатационно-технологических характеристиках (значительная за счет ФЭП удельная масса СБ, сложность изготовления, чувствительность к космическим воздействиям и др.), что приводит к повышенной стоимости выработки электроэнергии СБ данного типа. Целью изобретения является повышение удельной электрической мощности на единицу массы при одновременном повышении стойкости к внешним воздействиям в условиях космического пространства. Указанной цель достигается тем, что в космической солнечной батарее, содержащей несущий каркас, размещенные на нем фотоэлементы, включающий два проводящих электрода, разделенных зазором, один из которых выполнен светопроницаемым, на внутренней поверхности одного из электродов размещено покрытие из материала с работой выхода, меньшей работы выхода его материала, причем величина зазора не превышает длины свободного пробега фотоэлектронов. Сущность изобретения состоит в использовании в конструкции предлагаемой СБ в отличие от традиционных принципа внешнего фотоэффекта, при этом один из проводящих электродов выполняет функции фотокатода, из которого фотоэлектроны могут выбиваться преимущественно либо в направлении падающего света с теневой поверхности пленки, либо во встречном направлении с освещенной поверхности пленки. Фотоэлектроны захватываются другой пленкой с проводящим электродом, выполняющей функции анода. Поскольку катодная и анодная пленки выполнены из материалов с различной работой выхода электронов, то при воздействии на СБ светового потока между пленками устанавливается некоторая равновесная разность потенциалов (ЭДС порядка 0,6-0,8 В) при условии, что зазор между пленками меньше длины свободного пробега фотоэлектронов в среде зазора (это условие выполняется для космического вакуума при слабом внешнем магнитном поле). Наиболее существенно то, что проводящие (в том числе металлические) пленки могут быть выполнены гораздо более тонкими, чем полупроводниковые панели СБ порядка 0,5 мкм и менее, так что удельные характеристики предлагаемой СБ оказываются гораздо выше, чем у традиционных СБ. Кроме того, чувствительность электрофизических характеристик предлагаемой СБ к воздействию факторов космической среды (микрометеоритам, корпускулярным излучениям) является значительно более слабой. Производство пленок и сборка из них СБ на несущем каркасе технологически просты, а условия малой гравитации (невесомости) позволяют создавать легкие СБ весьма большой площади, а следовательно, и мощности. Преимущественным вариантом исполнения предлагаемой СБ является конструкция, где каждая из пленок с проводящим электродом выполнена в виде изолированных друг от друга полос, причем полосы разных пленок попарно образуют секции фотоэлектрического преобразователя, объединенные в последовательную цепь, в которой каждая тыльная полоса одной из секций преобразователя электрически связана с ориентируемой к Солнцу полосой соседней секции преобразователя, а токосъемные элементы электрически связаны с тыльной полосой на одном конце цепи и с ориентируемой к Солнцу полосой на противоположном конце цепи. Данная конструкция обладает повышенной технологичностью при построении СБ большой площади. При этом такая конструкция СБ позволяет уменьшить величину тока, протекающего по секциям ФЭП, в расчете на единицу вырабатываемой мощности и тем самым уменьшить толщину пленок, т.е.еще более снизить массу СБ. В предлагаемой СБ на поверхность пленки с проводящим электродом (фотокатода) нанесено покрытие, уменьшающее величину работы выхода электронов из этой пленки. Это можно осуществить, например, путем оксидирования соответствующей металлической (например,алюминиевой) пленки. При расположении анода над фотокатодом первый должен быть светопроницаемым,поэтому в данном варианте предлагаемой СБ проводящая пленка, ориентируемая к Солнцу, может быть выполнена перфорированной или сетчатой структуры с минимально возможным затенением катодной пленки. Сущность изобретения поясняется чертежами, где на фиг.1 показана схема СБ с пленочным фотокатодом, ориентированным к Солнцу; на фиг.2 показана схема СБ с фотокатодом на тыльной поверхности; на фиг.3 показана принципиальная схема СБ с секционированием; на фиг.4 представлена эквивалентная электрическая схема СБ; на фиг.5 представлен вариант конструктивного исполнения СБ. Как показано на фиг.1, СБ содержит размещенные на несущем диэлектрическом каркасе 1 проводящие пленки, одна из которых служит фотоэмиссионным катодом 2, а другая анодом 3. Пленка 2 расположена вдоль поверхности, ориентируемой к солнечному световому потоку 4. Через токосъемные элементы 5 проводящие пленки могут быть подключены к нагрузке 6. По другому варианту исполнения СБ, показанному на фиг.2, фотокатод 2 может располагаться вдоль тыльной поверхности, а анодная пленка 3 выполнена светопроницаемой, в частности перфорированной или изготовленной в виде тонкопроволочной сетки. Материалами электродов могут служить такие металлы, как алюминий, серебро, золото, платина, некоторые сплавы, оксиды щелочных металлов и другие соединения. Различная работа выхода электронов получена для пленок из одного и того же металла за счет оксидирования одной из них или иной поверхностной обработки. Как показано на фиг.3, катодная и анодная пленки могут быть выполнены в виде изолированных друг от друга полос 7 и 8, причем полосы одного типа (анодные) электрически связаны с полосами другого типа (катодными) по контактным стыкам (швам) 9 так, что здесь ФЭП большой площади представляет собой систему (цепь) последовательно связанных электрогенерирующих секций 10 меньших размеров. Каждая секция увеличивает напряжение, подаваемое на нагрузку 6, в соответствии с эквивалентной электрической схемой цепи, показанной на фиг.4. Как показано на фиг.5, конструктивно СБ со схемой по фиг.3 может содержать раскладной или сборный каркас с продольными 11 и поперечными 12 несущими элементами. Фрагменты ФЭП 13 в виде состыкованных разнотипных полос натянуты на каркас с пропусканием их через поперечные элементы 12 и закреплением по кромкам на тех же элементах 12, например, с помощью диэлектрических эластичных полотен (сеток, расчалок и т.п.) 14. Жесткость СБ в развернутом состоянии обеспечивается растяжками 15, стягивающими концы продольных стержневых элементов 11, шарнирно сочлененных в их центральных частях. Функционирование и эксплуатация СБ согласно изобретению осуществляется следующим образом. В космическое пространство выводится либо вся СБ в сложенном виде, либо ее фрагменты, собираемые затем в единую систему. Развернутая в рабочее состояние СБ ориентируется на Солнце одной из своих пленочных поверхностей в зависимости от типа фотокатода (см. фиг.1 и 2). Вследствие возникающей при этом электронной эмиссии в зазоре между пленками появляется электрическое поле, создающее разность потенциалов анодной и катодной пленок, равную разности работ выхода этих пленок. При подключении к СБ через токосъемные элементы 5 некоторой нагрузки 6 в цепи ФЭП возникает электрический ток, обеспечивающий питание нагрузки необходимой электроэнергией. Преимущественная область применения предлагаемых СБ высокие, в частности геостационарные, орбиты, где минимально воздействие атмосферы, магнитного поля планеты и ее гравитационного градиента, что позволяет создавать СБ весьма большой площади, а следовательно, большой мощности. Технико-экономическая эффективность предлагаемого изобретения может быть подтверждена следующими оценками. Известно, что КПД энергопреобразования при внешнем фотоэффекте составляет 2-10% Учитывая, что мощность солнечного светового потока у Земли составляет примерно 1,4 кВт/м 2 , электрическая мощность, вырабатываемая единицей поверхности СБ, составит порядка 0,051400 70 Вт/м 2 , если принять КПД 5% Этот показатель заметно хуже, чем у серийных кремниевых СБ, где достигается 110 Вт/м 2 . Однако толщина пленок может быть доведена до 0,5 мкм. Тогда масса 1 м 2 пленки, например, из алюминии составит 110,510 -6 2,710 3 1,3510 -3 кг 1,35 г для толщины 0,5 мкм. Отсюда удельная электрическая мощность (по массе ФЭП) с учетом использования двух пленок составит Для ФЭП с удельной массой 25 10 г/м 2 и каркаса с такой же в среднем удельной массой, т. е. если удельная масса солнечной батареи примерно 20 г/м 2 , удельная электрическая мощность СБ составит Этот основной показатель предлагаемой СБ почти в 20 раз превышает такой же показатель для перспективных полупроводниковых СБ, достигающий 200 Вт/кг, причем для реализации предлагаемой СБ не требуется дефицитных материалов и сложных технологий, поскольку получение очень тонких проводящих пленок является практически освоенным процессом. Стоимость создания предлагаемых СБ следует ожидать на уровне стоимости их выведения на орбиту, а поскольку последняя пропорциональна массе СБ, то выигрыш в стоимости выработки электроэнергии с помощью предлагаемых СБ становится достаточно очевидным. Кроме того, предлагаемые СБ характеризуются более длительным ресурсом и менее жесткими эксплуатационными требованиями. Предлагаемые СБ допускают возможность их эффективного использования в качестве управляющих (солнечно-парусных) органов ориентации и коррекции орбиты космических объектов. Перспективы совершенствования предлагаемых СБ связаны в основном с созданием особо тонких проводящих пленок (менее 0,1 мкм) и сверхлегких несущих каркасов. Соответствующие исследования ведутся в области устройств типа "солнечный парус". Источники информации 1. Колтун М.М. Солнечные элементы. М. Наука, 1987 г. стр.136-154. 2. Грилихес В.А. и др. Солнечная энергия и космические полеты. М. Наука, 1984г. стр.144 (прототип).



error: Контент защищен !!